Naukowy.pl

Ścisłe => Fizyka => Zadania => Wątek zaczęty przez: Bladousta w Sierpień 27, 2008, 04:06:45 pm

Tytuł: [ELEKTROSTATYKA] Wyprowadzenie wzoru na warto?? pola elektrycznego z prawa Coulomba.
Wiadomość wysłana przez: Bladousta w Sierpień 27, 2008, 04:06:45 pm
S?uchajcie, nie wiem jak ugryzc to zadanie...


Korzystaj?c z prawa Coulomba wyprowadzi? wzór na warto?? pola elektrycznego E na osi dipola o momencie dipolowym u. (odleg?o?? mi?dzy ?adunkami w dipolu wynosi D a ?adunki buduj?ce dipol maj? warto?? +/- q; u=Dq). Oraz wyprowadzi? wzór na potencja? pola elektrycznego od takiego dipola na jego osi.



Nie mam poj?cia jak to po??czy? :) mam prawo coulomba F, mam zale?no?? E=F/q...ale to tak prosto nie wyjdzie ;)


Pomo?ecie? :)
Tytuł: [ELEKTROSTATYKA] Wyprowadzenie wzoru na warto?? pola elektry
Wiadomość wysłana przez: Kris w Sierpień 27, 2008, 04:14:24 pm
Hm... prosto nie b?dzie. Masz mo?e dost?p do nowego podr?cznika Fizyka, cz??? 3, D. Halliday & R. Resnick? O ile dobrze pami?tam, tam jest to wyprowadzone. Autorzy korzystaj? m.in. z rozwini?cia funkcji w szereg Taylora (czy te? Maclaurina, nie pami?tam, mniejsza z tym) i to jest z tych "tudniejszych" rzeczy.

Ogólnie to mo?esz policzy? nat??enie pola pochodz?cego od ka?dego ?adunku osobno. Tak te? bodaj?e czyni? autorzy wspomnianego podr?cznika. Potem wynik uszczególniaj? tak aby powsta? prosty wzór na nat??enie pola.
Tytuł: [ELEKTROSTATYKA] Wyprowadzenie wzoru na warto?? pola elektry
Wiadomość wysłana przez: Bladousta w Sierpień 27, 2008, 11:58:13 pm
Mam najrozniejsze podreczniki, ale tego akurat brak :(

?atwo nie b?dzie....  :???:

A moze kto? ma w/w dzie?o? :p

Albo z przyjemno?ci? rozpracuje? ;)

Niby wiem o czym do mnie mówisz, ale w ogóle mi to nie 'idzie'...
Tytuł: [ELEKTROSTATYKA] Wyprowadzenie wzoru na warto?? pola elektry
Wiadomość wysłana przez: Kris w Sierpień 28, 2008, 11:02:14 am
(http://forum.servis.pl/album_pic.php?pic_id=110)


Niech z oznacza odleg?o?? od ?rodka dipola. Nat??enie w punkcie P jest superpozycj? nat??e? pochodz?cych od ?adunków dodatniego (+) i ujemnego (-). Nat??enia s? skierowane przeciwnie wi?c zapis: \vec E=\vec E_{(-)}+\vec E_{(+)} jest równowa?ny zapisowi: E=\frac{kq}{\(z-\frac{d}{2}\)^2}=\frac{kq}{\(z+\frac{d}{2}\)^2}. Teoretycznie tak? posta? mo?na zostawi?, ew. mo?na przedstawi? ?adunki za pomoc? definicji momentu dipolowego.

Nat??enie w przypadku z»d mo?na przedstawi? jeszcze ?atwiej. Wyrazy \(z\pm \frac{d}{2}\)^{-2} mo?na przedstawi? jako z^{-2}\(1\pm\frac{d}{2z}\)^{-2}. Je?li z»d, to wyraz ten mo?na rozwin?? w szereg dwumianowy. Jak podaje Nowoczesne kompendium matematyki wy. PWN, 2007 (mo?na to wyliczy? samemu, ale szkoda czasu - wyk?adowcy i tak b?d? tym katowa? na zaj?ciach wi?c po co jeszcze w domu  :wink: ) (1\pm x)^{-2}=(1+\mp 2z+3x^2\mp \cdots), jeste?my spokojni o zakres stosowalno?ci takiego rozwini?cia, bo wynosi on |x|<1 (zwi?zek z i d  gwarantuje nam ten spokój). Ograniczmy si? do rozwini?cia liniowego, bo dalsze wyrazy s? bardzo ma?e i ca?kowicie zaniedbywalne.

\(1+\frac{d}{2z}\)^{-2}\approx 1-\frac{d}{z} \\ \(1-\frac{d}{2z}\)^{-2}\approx 1+\frac{d}{z}

Zatem

E=\frac{kq}{z^2}\left(1+\frac{d}{z}-\(1-\frac{d}{z}\)\right)=\frac{2k\cdot qd}{z^3}=\frac{2ku}{z^3}

Polecenie jest troch? nie jasne. Policzy?em dla przed?u?enia osi dipola, bo w przedziale [0,5d;0,5d] jest banalnie prosto wi?c ten przypadek odrzuci?em.
Tytuł: [ELEKTROSTATYKA] Wyprowadzenie wzoru na warto?? pola elektry
Wiadomość wysłana przez: Bladousta w Sierpień 29, 2008, 10:17:47 am
O kurczaki! :D

Jeste? geniaaaaaaalny :)

Dzi?ki ogromne :)